
Given a data sample 𝑥∈𝑋, let 𝑟>0 be a 
random variable denoting the distance 
from 𝑥 to other data samples. The local 
intrinsic dimension of 𝑥 at distance 𝑟 is 

wherever the limit exists.

➢𝐹(𝑟): cumulative distribution function.

➢Expansion Dimension:

➢Two balls of differing radii 𝑟1 and 𝑟2, 
dimension m can be deduced from 
ratios of volumes:

➢ V1 and V1 are estimated by the 
numbers of points contained in the 
two balls.

Characterizing Adversarial  Subspaces Using 

Local Intrinsic Dimensionality

• Adversarial attack is a major security threat to 

deep networks (DNNs). 

• Better methods are needed for adversarial 

detection and defense.

• Adversarial subspaces need to be characterized 

for better understanding of adversarial attack.

Adversarial Examples and Adversarial Subspaces

Contact：Xingjun (Daniel) Ma            

Email : xingjunm@student.unimelb.edu.au

Why What

Adversarial Attack

➢Small perturbations on inputs can 
easily fool a deep neural network.

➢Perturbations are small, 
imperceptible to human eyes.

➢Open issues:

o All networks are vulnerable to 
adversarial attack.

o Adversarial examples transfer 
across models.

Adversarial Examples Adversarial Defense/Detection Adversarial Subspaces

 Characterizes local spatial 
expansion rate.

 More sensitive than KD and BU.

• We characterize the dimensional properties of 

adversarial subspaces using Local Intrinsic 

Dimensionality (LID).

• We show that adversarial subspaces possess 

higher intrinsic dimensionality.

• We demonstrate how LID can be used to 

discriminate adversarial examples.
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Given input (𝑥, 𝑦) and a target class 𝑙, 
the attack generates a new example 
𝑥_𝑎𝑑𝑣, so as to:

➢Current attacks:

oFast Gradient Method (FGM).

oBasic Iterative Method (BIM).

o Jacobian-based Saliency Map 
Attack (JSMA).

oOptimization Based Attack (Opt.)

➢Defense methods:

o Adversarial training.

o Defensive distillation.

o Gradient masking.

o Feature squeezing.

➢Detection methods:

o Deep feature based detectors.

o Artifacts based detectors: Kernel 
Density (KD) and Bayesian 
Uncertainty (BU).

Adversarial subspace is the local 
subspace that immediately 
surrounding an adversarial example.

➢Nonlinear view: 

o Densely scattered.

o Low probability regions.

o Close to data submanifold.

➢Linear view:

o Small changes at individual 
dimensions can sum up to 
significant change in final output.

Local Intrinsic Dimensionality of Adversarial Subspaces

Expansion Dimension

➢Adversarial subspace is close to, yet 
semantically far from original data 
subspace.

➢Adversarial examples can “escape” 
to adversarial subspace with only a 
small perturbation.

 Dimensional Escape.

 Adversarial subspaces have higher 
dimensionality.

Intuition Local Intrinsic Dimensionality Estimation of LID

➢Maximum Likelihood Estimator (Hill 
1975, Amsaleg et al. 2015):

➢Extreme Value Theory:

o Nearest distances are extreme 
events.

o Lower tail distribution follows 
Generalized Pareto Distribution.

➢Efficient estimation within a random 
minibatch.

Interpretation of LID 

 Higher dimensionality:

Adversarial subspaces are of 
higher dimensionality (LID).

 Consistency: 

Adversarial subspaces generated 
by different attacks share similar 
dimensional properties.

LID of Adversarial Subspaces

 Intermediate layers: Adversarial 
subspaces already begin to appear.

 Deeper layers: LID difference is 
more pronounced at deeper layers.

LID of Different Layers

 LID characteristics of adversarial 
examples from five current attacks 
can be easily discriminated from 
those of normal examples.

 New experiments with batch 
normalization shows better and 
more consistent results on new 
attacks.

Potential for Detection
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LID𝐹 𝑟 =
𝑟 ∙ 𝐹′(𝑟)
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minimize 𝑥 − 𝑥𝑎𝑑𝑣 𝑝

subject to 𝑓 𝑥𝑎𝑑𝑣 ≠ 𝑓 𝑥 or 𝑓 𝑥𝑎𝑑𝑣 = 𝑙


