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deep networks (DNNSs).

detection and defense.
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« Adversarial attack is a major security threat to
« Better methods are needed for adversarial

* Adversarial subspaces need to be characterized
for better understanding of adversarial attack.
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Adversarial Examples
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Dimensionality (LID).

 We characterize the dimensional properties of
adversarial subspaces using Local Intrinsic

 We show that adversarial subspaces possess
higher intrinsic dimensionality.

 We demonstrate how LID can be used to

\ discriminate adversarial examples.
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Adversarial Examples and Adversarial Subspaces

»Small perturbations on inputs can
easily fool a deep neural network.

» Perturbations are small,
Imperceptible to human eyes.

»Qpen issues:

o All networks are vulnerable to
adversarial attack.

o Adversarial examples transfer
across models.

» Adversarial subspace Is close to, yet
semantically far from original data
subspace.

» Adversarial examples can “escape”
to adversarial subspace with only a
small perturbation.

d Dimensional Escape.

O Adversarial subspaces have higher
dimensionality.

Adversarial Attack

Given input (x, y) and a target class [,
the attack generates a new example
x_adv, SO as to:

Adversarial Defense/Detection

minimize |[x — xgg,ll,
subject to f(xgqy) # f(x) or f(Xgqp) =1

» Current attacks:
o Fast Gradient Method (FGM).
o Basic Iterative Method (BIM).

o Jacobian-based Saliency Map
Attack (JSMA).

o Optimization Based Attack (Opt.)

» Defense methods:
o Adversarial training.
o Defensive distillation.
o Gradient masking.
o Feature squeezing.

» Detection methods:
o Deep feature based detectors.

o Artifacts based detectors: Kernel
Density (KD) and Bayesian
Uncertainty (BU).

Adversarial Subspaces

Adversarial subspace is the local
subspace that immediately
surrounding an adversarial example.

> Nonlinear view:
o Densely scattered.
o Low probability regions.
o Close to data submanifold.

> Linear view:

o Small changes at individual
dimensions can sum up to
significant change in final output.

Local Intrinsic Dimensionality of Adversarial Subspaces

Expansion Dimension

» Expansion Dimension:

» Two balls of differing radii ; and r,,
dimension m can be deduced from
ratios of volumes:

Vo (7 m:)
V1_ 51 "

» Vyand V; are estimated by the
numbers of points contained in the
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Interpretation of LID

two balls.

Local Intrinsic Dimensionality

Estimation of LID

r-F'(r)
F(r)

LID,(r) =

d Characterizes local spatial
expansion rate.

0 More sensitive than KD and BU.
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LID of Adversarial Subspaces

Given a data sample xeX, let r>0 be a
random variable denoting the distance
from x to other data samples. The local
Intrinsic dimension of x at distance r Is

In(F((1+¢€)-r)/F(r)) _T F'(r)

LIDy(r) £ lim, In(1 + €) F(r)

wherever the limit exists.

» F (r): cumulative distribution function.

» Maximum Likelihood Estimator (Hill
1975, Amsaleg et al. 2015):

. =il
- B 1 7 (x)
LID(x) = — (EZ logrk(x))

» Extreme Value Theory:

o Nearest distances are extreme
events.

o Lower tail distribution follows
Generalized Pareto Distribution.

> Efficient estimation within a random
minibatch.

d Higher dimensionality:

Adversarial subspaces are of
higher dimensionality (LID).

d Consistency:

Adversarial subspaces generated
by different attacks share similar
dimensional properties.
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100 random MNIST examples

LID of Different Layers

Potential for Detection

AUC score

d Intermediate layers: Adversarial
subspaces already begin to appear.

 Deeper layers: LID difference is
more pronounced at deeper layers.
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Layers used for LID estimation

 LID characteristics of adversarial
examples from five current attacks
can be easily discriminated from
those of normal examples.

- New experiments with batch
normalization shows better and
more consistent results on new
attacks.

Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression clas-
sifier) among LID, KD, BU, and KD+BU. The AUC score is computed for each attack strategy on
each dataset, and the best results are highlighted in bold.

Dataset Feature | FGM BIM-a BIM-b JSMA  Opt
KD 78.12  98.14  98.61 68.77  95.15
BU 32.37  91.55 2546 88.74  71.30

KD+BU | 8243 9920  98.8] 90.12  95.35
LID 96.89  99.60 99.83 92.24 99.24
KD 64.92 6838 9870 8577 91.35
BU 70.53  81.60 9732  87.36 91.39

KD+BU | 70.40  81.33 98.90  88.91  93.77
LID 82.38  82.51 99.78  95.87 98.94
KD 7039 77.18 9957 8646  87.41
BU 86.78  84.07 8693  91.33 87.13

KD+BU | 86.86  83.63 99.52 93,19  90.66
LID 97.61 87.55 9972  95.07 97.60

MNIST

CIFAR-10

SVHN

Dataset % FGM BIM PGD Deepfool EAD-0 EAD-40 Opt-0 Opt-40

AUC 88.55 95.28 94.45 98.78 98.85 98.82 98.75 98.45
L Accuracy 80.89 87.74 86.80 95.98 93.23 94,58 95.61 94.02
Precision 82.21  77.55 77.10 95.98 94.25 9545 95.75 94.42

Recall 80.10 88.98 85.92 96.20 9245 9391 95.70 96.48
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