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Adversarial Examples:

Small perturbations added to normal inputs can easily fool a deep neural network.

• Perturbations are small, imperceptible to human eyes.
• All networks are vulnerable to adversarial examples.
• Adversarial examples transfer across models.

original class

adversarial class



Deep Neural Network Transformations:

Neural network:

Evolving spaces with transformations:

____________________________________________________________________________

1st layer 10th layer 20th layer

Krizhevsky et al. 2012,   Karen et al. 2013



Understanding Adversarial Subspaces:
1. Non-linear explanation (Szegedy et al. 2013):
Non-linear transformations leads to the existence of 
small “pockets” in the deep space:
• Regions of low probability (not naturally occurring).
• Densely scattered regions.
• Continuous regions.
• Close to normal data subspace.
_________________________________________________________________________

2. Linear explanation (Goodfellow et al. 2014):
Adversarial subspaces span a contiguous multidimensional space:
• Small changes at individual dimensions can sum up to significant change in 

final output: σ𝑖=0
𝑛 𝑥𝑖 + 𝜖.

• Adversarial examples can always be found if 𝜖 is large enough.

𝒘𝑻𝒙 + 𝒃



Adversarial Attack:

• Fast Gradient Method (FGM) (Goodfellow et al. 2014):

Given input (𝑥, 𝑦) and a target class 𝑙, the attack generates a new example 𝑥𝑎𝑑𝑣, so as to:

• Basic Iterative Method (BIM), an iterative version of FGM (Kurakin et al. 2016):

• Jacobian-based Saliency Map Attack (JSMA) (Papernot et al. 2016).

• Optimization Based Attack (Opt.) (Carlini & Wagner 2017, Liu et al. 2016):

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜀 sign 𝛻𝑥 𝐽𝜃 𝑥, 𝑦 .

𝑥𝑎𝑑𝑣
0 = 𝑥, 𝑥𝑎𝑑𝑣

𝑖 = 𝑥𝑎𝑑𝑣
𝑖−1 + 𝜀 sign 𝛻𝑥 𝐽𝜃 𝑥𝑎𝑑𝑣

𝑖−1 , 𝑦 .

𝛿 =
1

2
tanh w + 1 − 𝑥, min( 𝛿 2

2) + 𝑐 ∙ 𝑓(𝑥 + 𝜎).

minimize 𝑥 − 𝑥𝑎𝑑𝑣 𝑝

subject to 𝑓 𝑥𝑎𝑑𝑣 ≠ 𝑓 𝑥 or 𝑓 𝑥𝑎𝑑𝑣 = 𝑙



Adversarial Subspaces & Dimensional Escape:

Question: What are the characteristics of adversarial subspaces?

What we do know about adversarial subspaces?
• Low probability and continuous regions, close to normal data 

submanifold, …

Dimensional Escape!

Adversarial Subspace: local subspace surrounding an adversarial example.

Intuitively:
• Close in distance, yet semantically far from original data subspace.
• “Escape” to adversarial subspace with only a small perturbation.



Dimensionality and Adversarial Subspaces:

Intuition:
Adversarial subspaces are of high intrinsic dimensionality.

Dimensional Escape:
• Density will change
• Uncertainty will change
• Fundamentally, dimensionality increases!
• Revealed using estimators of intrinsic 

dimensionality.

Expansion Dimension:
• Two balls of differing radii 𝑟1 and 𝑟2, dimension m can 

be deduced from ratios of volumes:

V2

𝑉1
=

𝑟2

𝑟1

𝑚

⇒ 𝑚 =
ln Τ(𝑉2 𝑉1)

ln Τ(𝑟2 𝑟1)

• Related to the Expansion Dimension (Karger and Ruhl 
2002, Houle et al. 2012)

• V1 and V2 estimated by the numbers of points 
contained in the two balls.



Local Intrinsic Dimensionality (LID):

Definition (Local Intrinsic Dimensionality)

Given a data sample 𝑥 ∈ 𝑋, let 𝑟 > 0 be a random variable denoting the 
distance from 𝑥 to other data samples. The local intrinsic dimension of 𝑥 at 
distance 𝑟 is 

LID𝐹 𝑟 ≜ lim
𝜖→0+

ln Τ𝐹((1 + 𝜖) ∙ 𝑟) 𝐹(𝑟)

ln(1 + 𝜖)
=
𝑟 ∙ 𝐹′ (𝑟)

𝐹(𝑟)
,

wherever the limit exists.

▪ 𝐹(𝑟): cumulative distribution function.

▪ 𝐹 𝑟 is analogous to volume V in Euclidean space, where 𝑟1 and 𝑟2 can 
be allowed to tend to a single value 𝑟. 



Estimation of LID:

Estimators of LID already available:

෢LID 𝑥 = −
1

𝑘
෍

𝑖=1

𝑘

log
𝑟𝑖 𝑥

𝑟𝑘 𝑥

−1

,

• Hill (MLE) estimator (Hill 1975, Amsaleg et al. 2015): 

• Based on Extreme Value Theory: 
o Nearest neighbor distances are extreme events.
o Lower tail distribution follows Generalized Pareto Distribution (GPD).

• Other estimators: e.g. Amsaleg et al. 2015, Gomes et al. 2008.

𝑟𝑖 is the distance of 𝑥 to 
its 𝑖𝑡ℎ nearest neighbor.



Interpretation of LID for Adversarial Subspaces:

• LID directly measures expansion 
rate of local distance distributions.

• The expansion of adversarial 
subspace is higher than normal 
data subspace.

• Adversarial examples are 
dimensionally outliers.



LID of Adversarial Subspaces:

We found:
• Higher dimensionality: In general, adversarial examples are of higher dimensionality (LID).
• Minibatch efficiency: Estimation of LID within a minibatch of 100 samples can help discriminate 

adversarial examples with high success rate, although larger batch size leads to further improvement.

• Deeper layers: LID difference is more pronounced at deeper layers.



Previous Work on Characterization of Adversarial Examples:

• Kernel Density (KD) (Feinman et al. 2017)

• Bayesian Uncertainty (BU) (Feinman et al. 2017)

𝐾𝐷 𝑥 =
1

𝑋𝑐
σ𝑠∈𝑋𝑐

exp
𝐹𝑛−1 𝑥 −𝐹𝑛−1 𝑠

2

𝜎2
,

𝑋𝑐: the set of samples in class 𝑐;
𝐹𝑛−1 𝑥 : the final hidden layer output.

𝐵𝑈 𝑥 =
1

𝐿
σ𝑟=1
𝐿 𝐹𝑟(𝑥) −

1

𝐿
σ𝑟=1
𝐿 𝐹𝑟(𝑥) ,

𝐹𝑟: dropout randomized network;
𝐿: the number of randomization.



Experiments & Results:

LID characteristics can help discriminate adversarial examples residing in the adversarial subspace.

Dataset Feature FGM BIM-a BIM-b JSMA Opt

MNIST

KD 78.12 98.14 98.61 68.77 95.15

BU 32.37 91.55 25.46 88.74 71.30

KD+BU 82.43 99.20 98.81 90.12 95.35

LID 96.89 99.60 99.83 92.24 99.24

CIFAR-10

KD 64.92 68.38 98.70 85.77 91.35

BU 70.53 81.60 97.32 87.36 91.39

KD+BU 70.40 81.33 98.90 88.91 93.77

LID 82.38 82.51 99.78 95.87 98.94

SVHN

KD 70.39 77.18 99.57 86.46 87.41

BU 86.78 84.07 86.93 91.33 87.13

KD+BU 86.86 83.63 99.52 93.19 90.66

LID 97.61 87.55 99.72 95.07 97.60

Table 1: A comparison of the discrimination power (AUC score (%) of a logistic regression classifier) among LID, Kernel
Density (KD), Bayesian Uncertainty (BU). AUC is computed for 5 attack strategies on 3 datasets. Best results are in bold.



Experiments & Results:

LID characteristics of simple attacks can help to discriminate other attacks.

Train \ Test attack FGM BIM-a BIM-b JSMA Opt

FGM

KD 64.92 69.15 89.71 85.72 91.22

BU 70.53 81.67 2.65 86.79 91.27

LID 82.38 82.30 91.61 89.93 93.32

Table 2: AUC (%) is computed for a logistic regression classifier trained on features (KD, BU, LID) of FGM 
attack, then tested on other forms of attacks (BIM-a, BIM-b, JSMA and Opt). The best results are in bold.



minimize 𝑥𝑎𝑑𝑣 − 𝑥 2
2 + 𝛼 ∙ ℓ 𝑥𝑎𝑑𝑣 + ℓ(LID(𝑥𝑎𝑑𝑣))

Small perturbation
_____________________________________________________________________

Change of class Low LID

Integrating LID into the Adversarial Objective:

It is difficult to explicitly generate adversarial examples residing in subspaces with low 
intrinsic dimensionality.

Table 3: The failure rate (%) of an adaptive attack targeting low intrinsic dimensionality (LID score).

MNIST CIFAR-10 SVHN

Scenario 1 (low LID at all layers): Attack Failure Rate 100 100 100

Scenario 2 (low LID at one layer): Attack Failure Rate 100 95.7 97.2



Conclusion:

Future Work:

 Dimensionality-driven adversarial defense.

 Better estimation of LID: Larger batch size / neighborhood size.

 Better understanding of DNNs in terms of intrinsic dimensionality.

 We characterize the dimensional characteristics of adversarial subspaces.

 The dimensional characteristics (LID) can be leveraged to recognize adversarial 
examples residing in adversarial subspaces.

 Adversarial subspaces tend to possess higher intrinsic dimensionality than normal 
data subspaces.
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Limitations of LID for detection:
• We are focusing on characterizing adversarial subspaces instead of proposing a perfect detection method.

Dataset % FGM BIM PGD Deepfool EAD-0 EAD-40 Opt-0 Opt-40

CIFAR-10

AUC 88.55 95.28 94.45 98.78 98.85 98.82 98.75 98.45

Accuracy 80.89 87.74 86.80 95.98 93.23 94.58 95.61 94.02

Precision 82.21 77.55 77.10 95.98 94.25 95.45 95.75 94.42

Recall 80.10 88.98 85.92 96.20 92.45 93.91 95.70 96.48

We found that the LID will be more robust in regularized space (batch normalization), and it can be 
used to distinguish high confidence (40) attacks.

There are still space to improve LID based analysis to better understand adversarial spaces.

• We run additional experiments with DNNs trained using batch normalization, and tested the discrimination 
power of LID on attacks (in bold) analysed in Lu et all. 2018 and Athalye et all. 2018.


