
✓ DNNs learn simple submanifolds 
first, then increase submanifold 
complexity to accommodate noisy 
samples.

✓ Noisy samples are hard to 
compress into low dimensional 
submanifolds.

✓ Dimensionality shift indicates 
noisy learning.

❑ Dimensionality shift from
compression to expansion. 

Dimensionality-Driven Learning with Noisy Labels

• Training deep neural networks (DNNs) robustly on 

data with noisy (incorrect) labels is important to 

deep learning. 

• DNNs overfit to noisy labels and generalize poorly, 

and their learning behaviours require further 

understanding.

Measuring Subspace Dimensionality
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Why What

Local Intrinsic Dimensionality

➢Given two balls of differing radii 𝑟1
and 𝑟2, dimension 𝑚 can be deduced 
from ratios of volumes:

➢𝑉1 and V2 are estimated by the 
numbers of points contained in the 
two balls.

Expansion Dimension Estimation of LID Interpretation of LID 

❑ D2L learns simpler subspaces 
with better test accuracy.

• We investigate learning behaviours of deep neural 

networks (DNNs) on clean labels versus noisy labels, 

from the view point of subspace dimensionality.

• We propose Dimensionality-Driven Learning (D2L) to 

robustly train DNNs with noisy labels.
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Given a data sample 𝑥∈𝑋, let 𝑟>0 be a 
random variable denoting the distance 
from 𝑥 to other data samples. The local 
intrinsic dimension of 𝑥 at distance 𝑟 is

wherever the limit exists.

➢ 𝐹(𝑟): cdf of the distribution of 
distances to data from a given 
reference location.

➢Maximum Likelihood Estimator (Hill 
1975, Amsaleg et al. 2015):

➢Extreme Value Theory:

o Nearest distances are extreme 
events.

o Lower tail distribution follows 
Generalized Pareto Distribution.

➢Efficient estimation within a random 
minibatch (Ma et al. 2018).

➢ LID_𝐹 (𝑟): measures growth rate of 
𝐹(𝑟) as the radius 𝑟 expands (Houle 
2017a).

Dimensionality-Driven Learning (D2L)

Learning with Noisy Labels

❑ Decreasing subspace 
dimensionality: compression.

Learning with Clean Labels Interpretation on Dimensionality Shift Dimensionality-Driven Learning

• Adjusted cross-entropy: questions 
original labels based on the degree 
of expansion 𝛼𝑖.

𝑖: current epoch, 𝑇: total number of 
epochs, 𝑦: original label, ො𝑦: predicted 
label. 𝛼𝑖: LID-based weighting for the 
label interpolation.

Subspace Learning

❑ D2L learns simpler hypothesis 
(Critical Sample Ratio): Top: 40% 
Bottom:60%, random flipping.

Hypothesis Learning

❑ D2L learns better representation 
(vs cross-entropy).

Representation Learning

❑ MNIST: 5-layer CNN; SVHN: 6-layer 
CNN; CIFAR-10: 12-layer CNN; 
CIFAR-100: ResNet-44.

❑ Noise rates: 20% - 60% random 
flipping (symmetric noise).

❑ D2L delivers strong classification 
performance across the tested 
noise rates.

Robustness to Noisy Labels
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Table 1: Test accuracy (%) ± stdev 

CIFAR-10, 

60% noise.

A:  

‘airplane’.

Noisy A: 

random.

B:

‘cat’.

Noisy B:

random.


