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Introduction

® Virtual Reality (VR) simulators are effective tools for surgical training.

® Automated real-time performance feedback Is an essential part of
VR based surgical training.

Challenges for feedback:

A\. Effectiveness: should improve novice skill to expert skill

B. Simplicity: refers only one feature change: less distraction & cognitive load.

C. Efficiency: provided within 1s after novice skill is performed.

Our Virtual Reality Temporal Bone Surgery
Simulator: 3D simulation with haptic drilling.

Real-time Feedback Problem

" Surgical skill is defined by: drilling stroke (force, speed, : o
duration, acceleration, straightness). v 1. trainee practicing _
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® Real-time feedback problem: find optimal actions to improve
novice strokes detected In real-time during training:
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Action: novice stroke to expert stroke

Problem: Given a random forest classifier F(x) and a novice instance
x, the problem is to find the optimal action A: x — x; that changes x to

an instance xy with at most one feature change such that x, has the
highest probability of being in the expert class:

argmax F(x), subject to Hx — fo <1
A:x—>xf 0

Real-time feedback formulation process

Feedback example, action A: (force = 0.2, speed = 0.3) = (force = 0.5, speed = 0.3) - feedback “increase force to 0.5

Random Forest based Feedback Formulation

 Data: 28K expert strokes vs 32K novice strokes from
/ surgeons vs 12 students.

* DA vs 5 other methods: Performance and Scalability

Rand-Rand| Iter-Iter |Rand-Iter ILP SV DA

success rate || 0.2140.04 [0.89x0.00(0.36==0.05{0.89+0.00{0.60x0.05|0.8940.00

effectiveness|| 0.184+0.23 [0.874+0.06{0.404+0.30|0.87+0.06|0.65+0.33| 0.8440.08

time-cost (s)|[0.00+0.00{12.17+0.14|0.3640.05(32.074+2.57]0.02+0.00{ 0.26+0.15

v DA: high success-rate & effectiveness while low time-cost
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v’ DA balances time-cost and effectiveness with small @ and y.
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